Jabir Hussain

Research Notes Blog About


Matrix factorisations (continued)

Recap: eigenvalues/eigenvectors for Hermitian matrices

Eigenvalue problem: given $A\in\mathbb{C}^{n\times n}$, find $\lambda\in\mathbb{C}$ and $q\in\mathbb{C}^n$ such that

\[Aq=\lambda q, \qquad |q|=1.\]

If $A$ is Hermitian/self-adjoint ($A=A^*$), then:

  • all eigenvalues $\lambda_1,\dots,\lambda_n$ are real
  • there exists an orthonormal eigenbasis $q_1,\dots,q_n$ with
\[\langle q_i,q_j\rangle=\delta_{ij}= \begin{cases} 1 & i=j\\ 0 & i\ne j \end{cases}\]
  • writing $Q=[q_1\ \cdots\ q_n]$ and $\Lambda=\mathrm{diag}(\lambda_1,\dots,\lambda_n)$,
\[Q^*Q=I, \qquad A=Q\Lambda Q^*.\]

Using outer products:

\[A=\sum_{i=1}^n \lambda_i\,(q_i\otimes q_i).\]

Recall: for vectors $a,b$, the outer product acts by

\[(a\otimes b)c=\langle a,c\rangle\,b.\]

The singular value decomposition (SVD)

Theorem (SVD)

Let $A\in\mathbb{K}^{m\times n}$ (with $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$). Then there exist unitary matrices

\[U\in\mathbb{K}^{m\times m}, \qquad V\in\mathbb{K}^{n\times n},\]

and a diagonal (rectangular) matrix $\Sigma\in\mathbb{R}^{m\times n}$ with diagonal entries

\[\sigma_1\ge\sigma_2\ge\cdots\ge 0\]

(and zeros off-diagonal) such that

\[A=U\Sigma V^*.\]

Equivalently: there exist orthonormal bases $u_1,\dots,u_m$ of $\mathbb{K}^m$ and $v_1,\dots,v_n$ of $\mathbb{K}^n$ and nonnegative numbers $\sigma_1,\dots,\sigma_r$ (where $r=\mathrm{rank}(A)$) such that

\[A=\sum_{i=1}^r \sigma_i\,(v_i\otimes u_i).\]

Action on a vector $x\in\mathbb{K}^n$:

\[Ax=\sum_{i=1}^r \sigma_i\,(v_i\otimes u_i)x = \sum_{i=1}^r \sigma_i\,u_i\langle v_i,x\rangle = \sum_{i=1}^r \sigma_i\,u_i v_i^*x.\]

Remarks

  1. The leading singular value is the operator norm:
\[\sigma_1=|A|_{\mathrm{op}}:=\max_{|x|=1}|Ax|=\max_{x\ne 0}\frac{|Ax|}{|x|}.\]
  1. Truncating the SVD gives a rank-$p$ approximation (“truncated SVD”, related to PCA):
\[A\approx A_{(p)}:=\sum_{i=1}^p \sigma_i\,(v_i\otimes u_i).\]
  1. Later: compact operators will have an SVD with infinitely many terms and $\sigma_i\to 0$ as $i\to\infty$.

  2. The SVD gives a generalised inverse (pseudoinverse) $A^\dagger\in\mathbb{K}^{n\times m}$ of

\[A=\sum_{i=1}^r \sigma_i\,(v_i\otimes u_i)\]

via

\[A^\dagger=\sum_{i=1}^r \frac{1}{\sigma_i}\,(u_i\otimes v_i), \qquad \sigma_i\ne 0\ \text{for }i\le r.\]

(Annotation in notes: “not technically an SVD because singular values are in the wrong order”.)

Exercises (from the notes)

Let $A=\sum_{i=1}^r \sigma_i\,(v_i\otimes u_i)$ be an SVD. Show:

\[A^*=\sum_{i=1}^r \sigma_i\,(u_i\otimes v_i), \qquad A^*A=\sum_{i=1}^r \sigma_i^2\,(v_i\otimes v_i).\]

What is $AA^*$?


Least squares and normal equations

Given $A\in\mathbb{K}^{m\times n}$ and $b\in\mathbb{K}^m$, consider the least squares problem: find $x\in\mathbb{K}^n$ minimising

\[\Phi(x):=\frac{1}{2}|Ax-b|^2 =\frac{1}{2}\sum_{j=1}^m |(Ax)_j-b_j|^2.\]

Gradient/Jacobian (as written):

\[\nabla \Phi(x)=A^*Ax-A^*b.\]

Hessian/second derivative (constant in $x$):

\[\nabla^2\Phi(x)=A^*A,\]

and $A^*A$ is SPSD.

Therefore, minimisers are precisely the solutions of the normal equations:

\[A^*Ax=A^*b.\]

Special case: if $A$ has full column rank, then $A^*A$ is invertible and the minimiser is unique:

\[x^\dagger:=(A^*A)^{-1}A^*b.\]

(Annotation in notes: if $A$ has a non-trivial kernel, you lose uniqueness of minimisers.)

If $A$ has SVD $A=\sum_{i=1}^r \sigma_i\,(v_i\otimes u_i)$, then (using the exercise identities)

\[x^\dagger=(A^*A)^{-1}A^*b=\sum_{i=1}^r \frac{1}{\sigma_i}\,(u_i\otimes v_i)b,\]

i.e.

\[x^\dagger=A^\dagger b.\]

Stability note

Forward map is stable:

\[|A(x+\delta x)-Ax|=|A(\delta x)|\le |A|_{\mathrm{op}}|\delta x|=\sigma_1|\delta x|.\]

Inverse map can be unstable:

\[|A^\dagger(b+\delta b)-A^\dagger b| =|A^\dagger(\delta b)| \le |A^\dagger|_{\mathrm{op}}|\delta b| =\frac{1}{\sigma_r}|\delta b|.\]

Annotation: $\sigma_r^{-1}$ can be huge; reconstructions $A^\dagger b$ are sensitive to perturbations in $b$ parallel to singular vectors $u_i$ corresponding to small $\sigma_i$.

Slogan (as written): inverse/learning problems are typically ill-posed, sensitive to “minor” perturbations.


Probability (finite-dimensional)

Kolmogorov setup

  1. A non-empty set $\Omega$ (sample space/outcome space).

  2. A collection of measurable events $\mathcal{F}\subseteq \mathcal{P}(\Omega)$, required to be a $\sigma$-algebra:

  • $\varnothing,\Omega\in\mathcal{F}$
  • if $E\in\mathcal{F}$ then $\Omega\setminus E\in\mathcal{F}$
  • if $E_1,E_2\in\mathcal{F}$ then $E_1\cap E_2\in\mathcal{F}$ and $E_1\cup E_2\in\mathcal{F}$
  • if $E_1,E_2,\dots\in\mathcal{F}$ then $\bigcup_{n\in\mathbb{N}}E_n\in\mathcal{F}$ and $\bigcap_{n\in\mathbb{N}}E_n\in\mathcal{F}$

(Annotation: $\mathcal{F}$ is like a list of questions it is “ok” to ask about the outcome $\omega\in\Omega$; if $E\in\mathcal{F}$ you may ask whether $\omega\in E$.)

  1. A probability measure $\mathbb{P}:\mathcal{F}\to [0,1]$ such that:
  • $\mathbb{P}(\Omega)=1$ and $\mathbb{P}(\varnothing)=0$
  • $\mathbb{P}(\Omega\setminus E)=1-\mathbb{P}(E)$
  • if $E_1,E_2,\dots\in\mathcal{F}$ are pairwise disjoint, then
\[\mathbb{P}\!\left(\bigsqcup_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\mathbb{P}(E_n).\]

Interpretations of probability

Two main meanings of $\mathbb{P}(E)$:

  1. Frequentist: idealised replicable experiment; on each run $E$ happens or not; define
\[\mathbb{P}(E):=\lim_{n\to\infty}\frac{\#\{\text{times }E\text{ occurs in first }n\text{ trials}\}}{n}.\]
  1. Bayesian/subjectivist: can speak of probability of any statement $E$, with $\mathbb{P}(E)=1$ meaning certainty true and $\mathbb{P}(E)=0$ certainty false.

Aleatoric vs epistemic uncertainty

  • Aleatoric (irreducible) uncertainty: intrinsic randomness/variability.
  • Epistemic (reducible) uncertainty: due to lack of knowledge; can decrease with more information.

Bayes’ formula (events)

For $A,B\in\mathcal{F}$ with $\mathbb{P}(B)>0$, define conditional probability

\[\mathbb{P}(A\mid B):=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}.\]

Then

\[\mathbb{P}(B\mid A)\mathbb{P}(A)=\mathbb{P}(A\cap B)=\mathbb{P}(A\mid B)\mathbb{P}(B),\]

so

\[\mathbb{P}(A\mid B)=\frac{\mathbb{P}(B\mid A)}{\mathbb{P}(B)}\,\mathbb{P}(A).\]

Annotations:

  • $\mathbb{P}(A\mid B)$: posterior probability
  • $\mathbb{P}(A)$: prior probability (before seeing data $B$)
  • $\mathbb{P}(B\mid A)$: likelihood (from a model for what data should do if $A$ is true)
  • $\mathbb{P}(B)$: normalising factor; also called the marginal likelihood / evidence

Random variables and distributions

A real-valued random variable is a function $x:\Omega\to\mathbb{R}$ defined on a probability space $(\Omega,\mathcal{F},\mathbb{P})$.

A random vector is a measurable function $x:\Omega\to\mathbb{R}^n$, i.e. $x=(x_1,\dots,x_n)$ with each $x_i$ a random variable.

The law/distribution of $x$ is the induced probability measure $\mu_x$ on $\mathbb{R}^n$:

\[\mu_x(A):=\mathbb{P}(\{\omega\in\Omega: x(\omega)\in A\}) =\mathbb{P}[x\in A] =\mathbb{P}(x^{-1}(A)).\]

Gaussian random vectors (continued)

We say that an $\mathbb{R}^n$-valued random variable/vector $\underline{x}$ follows a Gaussian/normal distribution with mean vector $m\in\mathbb{R}^n$ and covariance matrix $C\in\mathbb{R}^{n\times n}$, denoted

\[\underline{x}\sim\mathcal{N}(m,C),\]

if (equivalently)

  1. for every $\ell\in\mathbb{R}^n$, $\ell\cdot \underline{x}$ is a real-valued normally-distributed r.v. with mean $\ell\cdot m$ and variance $\ell^\top C\ell\ge 0$;

  2. the characteristic function $\mathbb{R}^n \to \mathbb{C}$

\[\ell \mapsto \mathbb{E}\!\left[\exp(i\,\ell\cdot \underline{x})\right]\]

takes the form

\[\mathbb{E}\!\left[\exp(i\,\ell\cdot \underline{x})\right] =\exp\!\left(i\,\ell\cdot m - \frac{1}{2}\,\ell^\top C\ell\right);\]
  1. [Valid only if $C$ is SPD i.e. if $C^{-1}$ exists] $\underline{x}$ has the PDF
\[p_{\underline{x}}(x)= \frac{1}{\sqrt{\det(2\pi C)}}\, \exp\!\left(-\frac{1}{2}\,\left\|C^{-1/2}(x-m)\right\|^2\right)\]

i.e.

\[\mathbb{P}[\underline{x}\in A] = \int_A \frac{1}{\sqrt{\det(2\pi C)}}\, \exp\!\left(-\frac{1}{2}\,\left\|C^{-1/2}(x-m)\right\|^2\right)\,dx, \qquad A\subseteq \mathbb{R}^n.\]

Linear images of Gaussians are again Gaussian!

Let $\underline{x}\sim\mathcal{N}(m,C)$ in $\mathbb{R}^n$ and fix $A\in\mathbb{R}^{p\times n}$ and consider

\[\underline{y}:=A\underline{x}\]

in $\mathbb{R}^p$. Then $\underline{y}$ is a $\mathbb{R}^p$-valued Gaussian, and in fact

\[\underline{y}\sim\mathcal{N}(Am,ACA^\top).\]

To see this:

\[\mathbb{E}\!\left[\exp(i\,\ell\cdot \underline{y})\right] = \mathbb{E}\!\left[\exp\!\left(i\,\ell\cdot (A\underline{x})\right)\right] = \mathbb{E}\!\left[\exp\!\left(i\,(A^\top \ell)\cdot \underline{x}\right)\right], \qquad \ell\in\mathbb{R}^p,\] \[= \exp\!\left(i\,(A^\top \ell)\cdot m - \frac{1}{2}\,(A^\top \ell)^\top C (A^\top \ell)\right) = \exp\!\left(i\,\ell\cdot (Am) - \frac{1}{2}\,\ell^\top (ACA^\top)\ell\right).\]

Another nice property of Gaussians is that their conditional distributions are Gaussian — and the conditional mean and cov. are easy to calculate using linear algebra.

Conditioning theorem

Let

\[\underline{x}=\begin{pmatrix}\underline{x}_1\\ \underline{x}_2\end{pmatrix}\]

be an $\mathbb{R}^n$-valued Gaussian, with $\underline{x}_1$ denoting the first $n_1$ components and $\underline{x}_2$ denoting the remaining $n_2$ components, $n_1+n_2=n$.

Write the mean $m$ and cov. $C$ of $\underline{x}$ in block form as

\[\mathbb{E}[\underline{x}] = m = \begin{pmatrix}m_1\\ m_2\end{pmatrix}, \qquad \mathrm{Cov}[\underline{x}] = C = \begin{pmatrix} C_{11} & C_{12}\\ C_{21} & C_{22} \end{pmatrix},\]

with $m_1\in\mathbb{R}^{n_1}$, $m_2\in\mathbb{R}^{n_2}$, $C_{11}\in\mathbb{R}^{n_1\times n_1}$, $C_{12}=C_{21}^\top$, …

Assume that $C$ and $C_{22}$ are invertible (generalizations are possible). Then, for every $x_2\in\mathbb{R}^{n_2}$, $\underline{x}_1\, \,\underline{x}_2=x_2$ is Gaussian,
\[\underline{x}_1\,|\,\underline{x}_2=x_2 \sim \mathcal{N}(m_1',C_{11}'),\]

where

\[m_1' = m_1 + C_{12}C_{22}^{-1}(x_2-m_2),\] \[C_{11}' = C_{11} - C_{12}C_{22}^{-1}C_{21}, \qquad (C_{21}=C_{12}^\top).\]

Kalman update formulae

  • $m_1’$: posterior mean
  • $m_1$: prior mean
  • $C_{12}C_{22}^{-1}$: Kalman gain matrix
  • $(x_2-m_2)$: residual vector $=$ data $-\mathbb{E}[\mathrm{data}]$